Images of SMC Research 1996

The Quest for Correctness

H.P. Barendregt

Die Genauigkeit, Kraft und Sicherheit dieses |mathematischen| Denkens, die nir-
gends vm Leben thresgleichen hat, erfullte ithm fast mat Schwermut. (The precision,
strength and certainty of this [mathematical] thinking, that is unequaled in life,

almost pervaded him with melancholy. R. Musil: The man without qualities, Ch.
28.)

R. Musil {13]: Der Mann ohne Eigenschaften.

1. SUMMARY

Modern society has a strong need for reliable information technology (IT).
To warrant correct designs for hardware and software systems, there is a
thorough methodology (specification, design based on subspecifications and
composition of components, and correctness proofs). Because of the diffi-
culty of making specifications and proofs, the success of this method has
been only partial, mainly in the area of hardware design.

Presently a new technology is emerging: computer mathematics. It con-
sists of the interactive building of definitions, statements and proofs, such
that it can be checked automatically whether the definitions are well-formed
and the proots are correct. Hereby the human user provides the intelligence
and the system does part of the craftsmanship. Some forms of computer
mathematics are already of use for the design of hardware systems. After
the technology has matured, it may become a tool for the development of
mathematics comparable to systems of computer algebra, but with a scope

39

f T
,}' ChoT

v bevord, Moreover, it probably will also be

streneth that s essentiall
ul for the desien of reliable software.

(HM ¢ DO o time, HIOHEV Wkl Hﬁ convention a siubstitate for Qa;%@ﬂ at her
than exchanging goods with goods or exchanging goods with gold 1t was
more practical to exchange goods with monev, The gold that was available
i exchange for the otherwise worthless coins or paper notes was stored
banks. The central bank of the most powertul country had its reserve of
gold stored in a well-protected place: Fort knox. Only powerful criminals
or James Bond (with the aid of pretty girls) could enter such a place. About
20 vears ago the link between money and gold was abandoned: since then
money stands for itself. As a consequence Fort Knox lost its importance.
Moreover, the How of cash has been drastically reduced by means of several
forms of electronic payvment, and therefore possession has become equivalent
to the right sequence of bits in sone central computer of a bank. Fven in a
relatively peacetul country as The Netherlands such computers are stored
in bunkers surrounded by a defense moat against tanks. But the James
Bond of today or tomorrow will not need force or women to enter these
places. Computer hacking using external connections makes the new Fort
Kknox vulnerable. Perhaps external connections can be limited or avoided
(but what then is the use of a central computer?”). There is, however, a more
serious problem: the software of the central computer may be ill-designed
(by accident or on purpose). Well-informed sources in the banking world
admit that this is indeed a very worrisome danger. (The daily How of money
through computer networks is about US$ 10'°. Whereas in an average
conventional bank robbery a couple of USS 1,000 is stolen, in an average
computer bank robbery one does cateh USS 1,000,000, The frequency of
these successful crimes, made possible by svstemn design flaws, is classified
information.

More examples can be given of the importance of correct systems. Simple
products such as electric razors carry their own microprocessors and soft-
ware. The manufacturers do not want to have bugs in these svstems for
obvious reasons. A more striking example is the following., Well-informed
sources of a large airline company have stated that “just 24 hours of fail-
ure of our worldwide reservation svstem will cause bankruptey’, because
of missed orders. Even more hnportant is the correctness of syvstems on
which the satetv of people depend: for example for the control of factories
or air-trathe. or for medical or military applications.

These examples all show that correct systems both the hardware and
the software are essential for the survival of a company. It 1s fair to state,
that i this digital era correct systems for information processing are more
valuable than gold. The remarkable thing is that in spite of our techno-

HE QUEST FOR CORRECTNESS

i

I a 1r N N b .
|'”|';}3: . : . ke TOE

i SUTHRIN

"l ille Ui .o i ey g N v
e 4 0 drl ay d R
i R s =h

2l -
A Mt e g,
AR ety
I s L PRI, vy b

- a o
T A £ S L ik b -

SR

oo e s Tl A it o ek

Figure 1. Correct software and hardware is of vital importance in many real-life situa-
tions, for example in air traffic reservation systems. Photo's Capital Press.

o

logically advanced hardware, we still are by and large in the stone-age of
software. By this is meant that it is very hard to produce correct software
or predict the time i1t takes to produce it.

3. DESIGN METHODOLOG
Part of the problem is that the needed systems are very complex. How can

one correctly design a system with millions of transistors or consisting of
nillions of lines of program code?

3.1. The Chinese box

A proposed solution is the following. The method is well-known, but usually
not explicitly described. Given the task to construct a system, one should
first transform the informal requirements into a more precise (formal) spec-
ification. Then one designs the system accordingly. Finally, one proves that
the design satisfies the given specification. For this the specification and
the design need to be formulated in one language.

This is an ambitious programme; it works only if the following items are
avallable with full precision:

*

il

. an expressive but intuitively understandable specification language;

. an expressive design language with good tools to combine modules
together:;

. a tool to verify proofs of formal statements.

mn.._:;am-

i i?*%‘” TR T

******* Hii T T AN A A 0 R A .43 P T B) g1t ML Gl i
fa
I
i}

It these three conditions are satistied, then one can use the followin 2 COI-

W

struction methodology., Given a specification S, one wants to make a design
o, such that one can verify

S{d),

L.e., that the program satisties the specification. This can be done by pro-
viding,
e specifications Sy, ...

a constructor F:

e a proof of the following statement (where the d,.d, are arb itrary)

K

Si(dy)& o &S(dy) = S(F(dy. ... dy)).

So the problem of constructing d satisfving S is transforimmed into the &
(easier) problems of constructing dy.....dy satisfving S).....Sy. respec-
tively.

If these dy.....d, are available, then the required d can be found:

d = F(dy.....dy).

Figure 3. The Chinese box.

THE QUEST FOR CORRECTNESS

see figure 2. In order to find now the dy, ..., d;, the method 1s applied again
to Si,...,5; and so on. In this way we obtain a ‘Chinese box’ containing
several boxes, each in turn containing other boxes, etcetera, see figure 3.
An example of this is the following. Suppose we want a music reproducing
device of high quality. This can be specified by stating that the difference
between the actual sound and the reproduced sound is small (according to
some appropriate measure). One way to obtain such a device is to buy a CD-
player, a CD, an amplifier, boxes and wires, to have a current outlet, and
then make the right connections. Each of the components can be specified.
Now to obtain e.g. an amplifier, one needs a transformer, integrated circuits,
etcetera, and make the right connections. In order to obtain a transformer,
one needs a magnet, wire, etcetera. KEtcetera.

The example not only shows that designing is a refined job, but also that
making precise specifications is important as well. For example the CD
should contain stored music according to a fixed coding scheme, otherwise
the CD player cannot be constructed.

Of course the method has to be ‘well-founded’: the smallest boxes should
not be empty. Indeed, for the design of software the smallest boxes will have
to contain programs provided by the instruction set of the processor. These
processors can be constructed following a similar design methodology for
hardware out of smaller boxes. In the end Nature provides the final step:
electrons in circuits that do their work.

3.2, Partial success

The design methodology given above is very general. It can be applied to
many situations, in which complicated ‘objects’ have to be constructed. In
the area of I'T it has provided a partial success for the construction of verified
hardware. For more than a decade hardware design has been done according
to the scheme specification/design /proof. The reason for this success is that
hardware is relatively simple, being comparable to propositional logic. In
this mathematical theory one can state and prove, for example, that *B and
A or not B implies A’, in symbols

(B&(AV —B)) = A. (*)

Here the objects of interest are easy to specify as Boolean functions. More-
over, propositional logic is decidable. That is, proofs of correct statements
can be generated automatically.

This description, however, is a simplification. For two reasons the situ-
ation with hardware design is more interesting. In the first place propo-
sitional logic, in spite of being decidable, is related to problems of high
complexity (NP-complete and NP-hard). Methods like Binary Decision Di-
agrams have been developed to overcome this difficulty, making it possible

43

44

H. P BARENDREGT

to deal with propositions with large numbers of variables (> 100, and not
just 2 as in (x)). Secondly, hardware is somewhat more complicated than
propositional logic. This i1s caused on the one hand by real-time aspects of
circults, and on the other hand by multiple repetitions of patterns that can
better be treated in a more powerful theory. As a result the theory and
practice of hardware verification is a flourishing field (see T.F. Melham et
al. [12]).

3.8. A challenge

Also in the area of software design there have been efforts to prove correct-
ness. But here matters are essentially more difiicult. Software corresponds
to predicate logic, with statements like ‘there exists an x such that for all
y one has x < y implies that for all y there exists an x such that xr < y’; In
symbols

dxVy.x <y = Vydr.x <.

The difficulty is that the so-called quantifiers ‘for all’ and ‘there exists’ range
over potentially infinite sets, and therefore it comes as no surprise, that this
theory 1s undecidable.

Hardware ~ propositional logic (decidable)
Software ~ predicate logic (undecidable)

Another problem is to find the right granularity. The first introduction
of correctness proofs in program design, by Hoare, was in connection with
imperative programs in which continually a given state (the values of the
variables) is modified. By formulating a suitable property of the state and
proving that it is invariant under the modifications ot the program, correct-
ness proofs can be given. At that time this method was definite progress.
But the method is of a granularity that is too fine to prove that large soft-
ware systems are correct.

New programming paradigms such as functional programming, (see e.g.
R. Plasmeijer and M. van Eekelen [18] or D. Pountain [19]), possibly includ-
ing object-oriented features, may become a good design tool to overcome
this dificulty by using the methodology of the Chinese box. Software design
still lacks a good language for specification and the right tools for correctness
proofs. This is one of the reasons, why we still are in the software crisis. In
the next section we will discuss systems of so-called computer mathematics
that may very well change this situation.

4. COMPUTER MATHEMATICS
Because computer mathematics (CM) is a relatively new technology, present-
ly in its second generation of prototypes, there is not yet a standard name

THE QQUEST FOR CORRECTNESS

for 1t. Alternative names are: ‘systems for proof development’, ‘systems
for theory development’ and ‘interactive theorem provers’. We have chosen
the name ‘computer mathematics’ because of the analogy with systems for
computer algebra (CA).

4.1. What 1s computer mathematics?

It 1s well-known that computers perform numerical computations. Since the
1960s systems for computer algebra have been developed, that can represent
exactly numbers like /7 and perform symbolic computations quite well.
(However, since several systems of CA state for example that (/)% = =z
without requiring that x > 0, the diligent judgement of a mathematician
remains necessary.)

Systems for computer mathematics go an essential step beyond this. They
can deal with arbitrary mathematical notions. For example, it is possible in
these systems to represent exactly a Hilbert space or more complex math-
ematical structures. This is possible because one can formulate statements
involving quantifiers (V, d) and predicates. CM systems also provide sup-
port for mathematical reasoning, for example by manipulating complex ex-
pressions. One fundamental difference between equational reasoning (both
numerical and symbolic) and reasoning with predicates is that in many cases
the former is decidable, whereas the latter usually is not. For this reason
systems of computer mathematics are interactive, whereby the mathemati-
clan takes the lead.

Before going into more detail we first want to mention three important
contributions of the Greek philosopher Aristotle (384-322 B.C.) to the field
of computer mathematics. He established the following.

Description of the axiomatic method

Aristotle distinguished concepts and propositions. Concepts need to be de-
fined and propositions need to be proved. (A proof is a sequence of state-
ments, such that each one is either an axiom or follows from previous ones
by reason. A proof p is proving A, if A is the last statement in the sequence
p. The discovery of proofs, attributed to Thales (625-545 B.C.), is one of the
greatest inventions of humanity. They occur in various degrees of precision
(depending on the refinedness of the statements and the reasoning) and are
the main foundation for the reliability of science.) But in order to have a
proper start one needs primaitive concepts and primitive propositions, the
so-called azioms. Not much later Euclid (around 300 B.C.) carefully based
his famous book Flements on this axiomatic method.

Formulation of the quest for logic
Using the axioms, and primitive and defined concepts, one can prove propo-
sitions by means of steps motivated by intuitive reasoning. Aristotle wanted

H P. BARENDREGT

to provide a set of explicit rules (syllogisms), that is powerful enough for
most 1ntuitively valid proofs. Although his teacher Plato (427-347 B.C.
was against this programme, Aristotle succeeded partially, by singling out
a correct (but immcomplete) set of syllogisms. But more important was, that
Aristotle had the courage to state the problem of formalising reason.

Distinction between proof-checking and theorem proving

Aristotle said, that if someone showed him a proof of a statement, then he
would be able to verify the correctness of that proof (and thereby of that
statement relative to the axioms). If, however, he would be asked to prove

a given theorem (of which a proof existed, but that was not given to him
then he would not always be able to do so.

The philosopher and mathematician
G.W. Leibniz (1646-1717) went fur-
ther, by expecting more from for-
malisms and machines. He wanted
to construct

. e a language L, in which arbitrary
problems could be formulated;

e a machine, that could determine
the correctness of statements in L.
t 1s interesting that around 1700
he belief in machines was such,
hat Leibniz had in mind to ask as
rst question: ‘Does God exist?’

mx‘:'?-»:-‘!*

But, as was hinted at by Aristotle

and proved later by Turing), such
automated deduction is in general not possible. An actual system of com-

puter mathematics (like LEGO or Coq) is less powerful than Leibniz would
have wanted. It consists of a user interface in which the user can construct
a so-called (mathematical) context:

Figure 4. G.W. Leibniz.

e primitive notions, axioms and defined notions:
furthermore one can formulate

e statements;
and for some of these statements one can construct interactively

e proofs.

The computer will verity whether the definitions are well-formed and
whether the proofs are correct. Such definitions and proofs need to be

THE QQUEST FOR CORRECTNESS

given in a fully formal way, otherwise they cannot be verified mechanically.
A tully formal proof is called a proof-object.

It 1s clear, how much this technology is related to the three ideas of Aris-
totle. His programme to find a complete system of logic, was completed by
G. Frege (in 1879, more than 2200 years after the original quest), building
upon work of Leibniz, Boole and Peirce. (Frege did start with the formalisa-
tion of some mathematics, but unfortunately used an inconsistent system of
mathematical axioms.) Soon after, B. Russell and N. Whitehead gave a fully
formalized version of small fragments of consistent mathematics (Principia
Mathematica, 1910). This work formed the basis of the fundamental results
stating that arithmetic is essentially incomplete (K. Godel, 1931) and un-
decidable (A. Turing, 1936). In practice, however, Russell and Whitehead’s
system 1s not adequate for full formalization, because the system does not
contaln names, which causes actual theories to become unfeasibly large:;
moreover, there is a need for substitution instances of theorems, which in
Principia were indicated informally.

The idea of machine verified proofs originated with the Dutch mathe-
matician N.G. de Bruijn, who in 1968 designed for this purpose a family
of languages generically called Automath (see Nederpelt et al. [14]). In-
spiration for this came from the meaning of the logical connectives, as put
forward by L.E.J. Brouwer and A. Heyting. The ideas are also related to
work of Gentzen, Church and Howard (see figure 5, subsection 4.3). R. Boyer
pointed out to me that also in McCarthy |11] automated proof-checking was
considered. In fact McCarthy’s paper is rather close to the present paper.
An essential difference is that the use of type theory (see below) and natural
deduction proofts is not discussed by him.

As was pointed out by Aristotle proof search is essentially more difhcult
than proof-checking. By the definition of proof, automated proof verification
1s always possible, while automated deduction i1s not. Nevertheless, for
special areas of interest there are good systems for automated deduction.
For example, the geometry prover of Chou and Wu (see Bundy (4], p. 393),
can derive automatically Morley’s theorem concerning triangles in which
the three angles are trisected. But this is a statement in a decidable theory.
Another example is concerned with predicate logic. Although this theory is
undecidable, one can derive automatically a class of tautologies of predicate
logic, that are more difficult than those used in most mathematical texts.

In spite of the remark of Aristotle that proof-checking is different from
theorem proving, systems for CM usually incorporate both. The reason
1s that in a pure proof-checker it 1s very boring to write down a formal
proof. On the other hand general theorem proving is impossible. Usually
one needs to give a sequence of lemmas to the system, before it can prove

an interesting result. So there is a spectrum between proof-checkers and
theorem provers.

A7 : | j

48

H . P. BARENDREGT

4.2. Why computer mathematics?
Automated proof-checking and the development of formal definitions, state-
ments and proof-objects is important for the following reasons.

Correctness
Both mathematics and system design require correctness. In the two disci-
plines the problems are somewhat different.

In mathematics the body of knowledge has become very large and com-
plicated. Proofs of complicated theorems are verified by humans in the
so-called sociological way: the proof is divided into parts, that are checked
by different specialists. A prime example is the result about the structure
of the simple finite groups, with a proof of more than 20.000 pages. If one
succeeds In generating formal proof-objects for such complicated theorems,
then the computer verification will add to the acceptance of these (method-
ological considerations will be given below). But this is an extreme example.
It 1s also important to have automatic proof verification for less spectacular
results. If a mathematician sees a useful but unknown result, with a proof
of, say, 20 pages long, then it saves time to know beforehand whether the
result 1s correct or incorrect. Moreover, 1t 1s useful to have mathematical
theorems in a verified library, because the size of the collection of results is
growing so rapidly, that it has become impossible for one person to under-
stand all of it or even just know about all of it. In this way arbitrary details
can be looked up and combined.

It should be admitted that formalizing mathematics is difficult. This is
not so much because of the length of proofs but because of their depth. Also
standard mathematical proofs contain jumps that are not formal, but are
clear to an artisan in the field. It is fair to say, that at present mathematical
proofs can be verified better by a human than by a computer, because of the
mentioned difficulty in formalisation. In subsections 4.3, 4.4 it is indicated
how this may change.

In the field of system design (hardware and software) the problem of ver-
ification is different from that in usual mathematics. Here most proofs are
long but intellectually not stimulating. This implies that machine verifi-
cation is essential. As mentioned in section 2 this is done successfully for
hardware design, but not yet in software design because of the lack of spec-
ification and proof tools. I expect, that when the technology of CM will
have matured, it will have a strong influence on sottware design.

Support

Systems of CM may facilitate the construction of large proofs (both in
mathematics and in system design). These constructions can be done top-
down or bottom-up. One may leave some lemmas unproven or even concepts
undefined; the necessary details can be filled in later. Of course even without

THE QQUEST FOR CORRECTINESS

a system of CM this can be done. But the help of such a system consists
i verifying the well-formedness of definitions and the correctness of proofs.
Moreover, the systems keep a record of those details that are still left out.
Another support by systems of CM consists in generating formal proofs
from so-called tactics, to be discussed in the next subsection.

Program extraction

It a statement of the form ‘Va3y...” is proved, then this often gives rise to
an algorithm that finds the y in terms of x. If the proof is given formally,
then the algorithm can be extracted automatically in the form of a program,
see e.g. Parent [15].

Education

As 1t 1s a fact, that in several ‘civilised’ countries the notion of proof is not
taught anymore at high-school level, it becomes necessary that university
students of mathematics, science and technology get acquainted with them
as soon as possible. Interactive systems for proof development will be of
definite help, notably because such systems are patient. Moreover, the
proofs can be found only, if one understands what one is doing.

Cultural value

Suppose, that with the support of a CM system writing verified mathematics
1s not much more difficult than writing an intuitively correct paper in TEX,
then a new standard of precision may emerge. By building a library of
verified results, mathematics may be protected against corruption in times
that the subject is not cultivated anymore (as essentially happened in the
Middle Ages). In Bundy [4], pp. 238-251, a dramatic but non-Utopian
plea for building such a library is formulated as the QED manifesto. One
quotation: ‘/building such a library is] of significant cultural character.
Like the great pyramids, the effort required (especially early on) may be
great; but the rewards can be even more staggering than this effort’.

Foundational interest

It 1s an interesting challenge to see, whether it is possible to build systems
of CM, such that it does not require too much effort to construct proof-
objects. In this respect De Bruijn has as thesis, that in a proper system of
CM the length of a formal proof or required tactics is just a constant factor
times the length of a complete intuitive proof. Experience so far is in favour
of this thesis. For the first generation prototypes the factor is about 30: for
the second generation that uses tactics it is about 10. Also it is of interest
to study, in which class of formal systems proofs can be well represented
(set theories vs. type theories, other systems).

T'here may be a methodological objection to the idea of computer verifica-

' 1
.) <
LR 1 . . .
) vl .
N | s - -
1 . PR A .
- ’ .
. ' i ’
. o ' CR
- ..
. .
L v

S0

H P BARENDREGT

tion. It a mathematical statement 1s verified for its correctness by a coin-
puter, are we willing to believe that statement? There could be a mistake
in the design of the veritying program.

This question has a satistactory answer. If the verification is warranted by
a proof-object that is made public and that is verifiable by a relatively simple
method (by a program consisting of a few pages), then one can recheck
the statement locally, 1.e., on a PC with one’s own personal proot-checker.
Under these conditions of repeatability, one can trust the correctness of the

statement at least as much as (or even more than) the safety of a bridge
over which one is going to walk.

4.3. Formal CM systems

Systems of computer mathematics with portable proof-objects (as required
by the quest for reliability discussed above) are to be done in a formal
system 7' that should have the following properties.

e T'is adequate: the usual mathematical concepts, statements and proofs
can be expressed (in a natural way) formally in T'. Adequacy requires
the following particulars.

1. Adequacy for defining. The system T' has sufficiently rich con-
cepts and allows the introduction of names.

2. Adequacy for reasoning. The usual logical deductions occurring
1in mathematics are representable as proof-objects of 7.

3. Adequacy for computing. Symbolic (and numerical) computa-
tions, as well as equational reasoning, are possible in 7.

e T is faithful: T is conservative in the sense that if it states that P
is a proof of statement S (in context I'), then the intuitive statement
S is provable in ordinary mathematics relative to the corresponding
context.

e T is efficient (for the machine): the verification of the well-formedness
of a definition and the correctness of a proof can be verified in a teasible
way.

e T is practical (for the human user): writing mathematics in 7" 18 not
much more difficult than writing it in informal language.

Following the ideas in the languages of the Automath family, now a wide
spectrum of type theory systems are used as formal system 7T'. See Nederpelt
et al. [14], 229-247 for a discussion. The simplest of these are called Pure
Type Systems (PTSs), see Barendregt [1]. Under influence of D. Scott and
P. Martin-Lof inductive types and extra reduction rules are added to the

THE QUEST FOR CORRECTNESS

formal systems. The resulting extensions are called Type Systems (TSs).
See Martin-Lof [10] and Paulin-Mohring [16] for a description of these.

T'ype theories are forinal systems in which there is a natural way to re-
present statements and proofs. In fact, it seems more natural to encode
mathematics in these systems than in the more conventional set theory.
T'he reason is, that type theory has a natural way to use many-sorted logic
(in order to deal with structures like vector spaces, in which there are vectors
and scalars belonging to different ‘sorts’), as well as to formalize second and
higher order logic (to reason about properties of propositions, or properties
of properties of propositions; in this way one can formulate the notion of ‘in-
finite’). To make a variation on a statement of Laplace, we can say that ‘we
do not need the hypotheses of set theory’. (Napoleon remarked to Laplace
that in his work ‘Mécanique Céleste’ he did not mention the author of the
universe. Laplace answered: ‘Sire, I did not need that hypothesis’.) More-
over, set theory sometimes gives rise to unnatural questions, for example
De+/2? In type theory such questions cannot be formulated.

One important aspect of (P)TSs is that some proof steps (of defini-
tional nature) do not need to be given explicitly. Suppose we have proved
P& Pr=(). Now define P = P1&P,. Then we have, of course, P=(). In
a (P)TS the same proof-object for P& P>=() works also for P=-(). This
P and P& P, are said to be definitionally equal and share the same in-
habitants (by a rule of PTSs). In TSs more equalities hold in this way.
For example there exists a term Sq (for squaring), such that for a natural
number like 3 one has Sq (3) = 9 definitionally. So a proof of A(9) is also a
proof of A(Sq(3)). This is the essential difference between TSs and PTSs.

Now we will discuss how the list of requirements applies to type theories.

1(a). As was already mentioned, type theories are strong enough to re-
present most mathematical reasoning. In addition to this adequacy, the
extra data types available in TSs make representations easier in these sys-
tems. It is known also in programming that extra data types make life
much easier. Surprisingly many concepts in mathematics are related to
inductively defined data types (for example the notion of polynomial).

1(b). Although proofs of most tautologies (syllogisms) of predicate logic,
that are needed in mathematics as deduction steps, can be found auto-
matically by resolution methods, this does not mean that the problem of

formalising logical steps is solved. The reason is that one needs names in
mathematics. Now even if

name; = names;

1S a tautology, this is so, only after the names are replaced by the proper
expression they stand for. This so-called ‘unfolding’ should not be done
fully, because then the expressions become unfeasibly large. So the problem
boils down to deciding what names have to be unfolded.

51

52

H.P. BARENDREGT

Fach statement A of informal (but precise) mathematics can be trans-
lated as a formal statement (A) in logic. A mathematical context T’
consists of a set of axioms and definitions. When we write these for-
mally, we obtain a formal context (I'). Predicate logic is such that we
can derive (A) from (I') exactly when A is informally provable from T.

T'ype theory goes one step further. A statement A is transformed
into the type (i.e., collection)

A] = the set of proofs of A.

So A is provable if and only if [A] is ‘inhabited’ by a proof p. Now a
proof of A=>B consists (according to the Brouwer-Heyting interpretation

of implication) of a function having as argument a proof of A and as value
a proof of B. In symbols

4=B] = [4] - [B.
Similarly
VrxeA.Pz]| = Ilz:A.[Pz],

where Ilx:A.[Pz| is the cartesian product of the [Pz], because a proof
of Vx€A.Px consists of a function that assigns to each element z€A
a prootf of Pz. Using this interpretation a proof of VyeA.Py= Py is
Ay:Alz:Py.x. Here A\x:A.B(x) denotes the function that assigns to input
r€A the output B(x).

Verifying whether p is a proof of |A], boils down to verifying whether
in the given context the type of p is equal to [A].

Figure 5. The essence of proof-checking.

1(c). Equational reasoning is not yet incorporated in a feasible way in
T'Ss. Systems of CA can produce valid equations. Several ways of doing
this in CM systems are being studied: the believing way, in which the CM
system jJust accepts equations produced by a CA system:; the skeptic, 1n
which the CA system is forced to give evidence (a proof-object) for each
statement it sends to the CM system; and finally the autarkic way, in which
the CM system learns to do equational reasoning by incorporating some
verified term rewriting techniques.

2. Unfortunately tfaithfulness is only known for several adequate PTSs and
not for the corresponding more practical T'Ss. It is conjectured, however,
that the right TSs are faithful.

3. As to efficiency, both for the PTSs and the T'Ss correctness is decidable
by a simple program. But the verification is in general not feasible in these
systems. It is, however, an empirical fact, that if formal definitions and

THE QUEST FOR CORRECTNESS

proofs in these type theories come from definitions and proofs understood
by a human, then the verification of correctness is feasible.

4. Even the stronger T'Ss are not yet practical. What is needed, is a kind
of higher language (in the sense that FORTRAN and PASCAL are higher
programming languages than assembler) that is convenient to express math-
ematics but that can be translated easily to the more low-level language of
(P)TSs. Such a language is called by De Bruijn a mathematical vernacular.

4.4. Implementations

The first prototype CM system was the Automath proof-checker built in
1970, see Nederpelt et al. [1994], pp. 783-804. In this system the proof-
object had to be constructed by hand. It required a mathematical monk
to formalise a non-trivial part of mathematics. In the second generation
prototypes the proof-objects are generated via so-called tactics. A tactic
1s a sequence of commands that the user can give to the system; from this

a proof-object can be compiled automatically. Suppose, for example, that
one has to create a formal proof for

Vr,yeA |P(x,y)=Q(x)] (+)

(the ‘goal’) from a certain context. Then one ‘pushes a button’ and the
system adds to the context that x,y€A and the assumption P(z,y). Now
the goal 1s to prove Q(x) from the extended context. As soon as this is

done the system provides a proof for (+). See figure 6 for an example of
tactics. Not shown are the answers of the system after each statement made

by the user. These answers consists of new (simpler) goals—as described
above—so that the human does not get lost while designing the proof of
(+).

These tactics do not constitute a vernacular because they are close to the

syntactical structure of the formal proof, rather than to the mathematical
1dea of the informal proof.

4.5. Existing systems

The principal second generation prototype systems for CM with portable
proof-objects are NuPrl (see Constable et al. [5]), Coq (see Dowek et al.
7]), and LEGO (see Luo et al. [9]). These systems have as extra features:

e tactics.
e term rewriting.

e (some form of) automated deduction.

Tactics make it much easier for the human user to construct a proof-
object. NuPrl was the first system based on type theory using tactics.
Many theorems are proved using it.

>3

54

L serrem—— e —————rm—— — ——————— er———————

H. P BARENDREGT

e T

(*Theofemwbrinkers5mprinéiple.J)
Goal ({P:Prop} P \/ “P) ->
{Cafe : Typel} {w:Cafe} {Drunk : Cafe -> Prop}

Ex [x:Cafe] (Drunk x) -> {x:Cafe} Drunk x;
intros EM :

e S sk "

Refine EM ({x:Cafe} Drunk x):
Intros _; Refine ExIntro; Refine w;
intros _; Immed;
intros; Refine EM (Ex [x:Cafe] ~(Drunk x)):
intros; Refine H1l; intros; Refine ExIntro; Refine t;
intros _; Refine H2 H3;
intros; Refine H;
intros; Refine EM (Drunk x);
intros; Immed;
intros; Refine H1;
Refine ExIntro; Refine x; Immed;
Save Drinkers’_principle;

—— ol — i

AT iy AP i el - —

Figure 6. Tactics.

Incorporation of term-rewriting makes it easier to deal with symbolic and
other forms of computation. In particular the autarkic way of incorporating
CA can make use of this facility.

Automated deduction based on resolution solves some of the logical steps
to be made. As pointed out before, diligent use of unfolding definitions
1s necessary. In some versions ot Coq this can be done by ‘clicking’ on
the name. LEGO has some ‘automated’ unfolding, necessary for ease of
use. One of the newer features of Coq is the automatic translation of a
proof-object into a proof in natural language, see Coscoy et al. [6].

In figure 7 one can see for Smullyans ‘Drinkers’ principle’ an informal
proof (in ‘my best mathematical style’), the proof-object, and finally a
translation of that formal proot into natural language. The formal proof
1s obtained through an interactive session in which the user provides tactics
to the machine, see figure 6.

Although the translated proofs in natural language are somewhat ‘stiff’,
these may turn out to be useful for the construction of a vernacular. The
reason is that seeing a formal proof-object does not easily lead to under-
standing, while a proof in natural language does. In particular this is so,
when sufficiently many details that are obvious to a human are elided.

THE QuEsT FOR CORRECTMNESS

Smullyan’s ‘Drinkers’ principle’: in a room with people there always is at

least one person, such that if that person starts to drink, then everybody in
the room starts to drink.

R.M. Smullyan

J— - e

Theorem|Drinkers’ principle| Let U/ be a
non-empty set and let () be a predicate
on /. Then

JeeU.[Q(x) — VyelU.Q{y)].
Proof. We distinguish two cases.

Case 1. Vy.Q(y). Then an arbitrary x&l/
makes the implication true,

Case 2. ~Vy.Q(y). Then —-Q(xg) for
some xp&l/. Now take x = xg, to make
the implication vacuously true.

Fig. 7a.

Theorem Drinkers' principle.
Statement
(VP: Prop. P v - P) =»
VU: Set. U => VQ: U=>Prop. Jdx: U. (Q x) =» Vx0: U. (Q x0).
FProof
AH': VP: Prop. P v — P. AU: Set. AH'0: U. AQ: U = Prop.
(or_ind
WVx0: U. (Q x0) — (Vx0: U. (@ x0)) dx: U. (G x) = ¥x0: U. (Q x0)
AH'1: Vx0: U. (Q x0).
(ex_intro U Ax: U. (Q x)=> Vx0: U.(Q x0) H'0 AH'2: (Q H0). H'1)
AH'1: — (Vx0: U. (Q x0)).
(or_ind
dx: U, - (Q x) - (dx: U. —~(Q x)) dx: U. (Q x) = Vx0: U. (Q x0)
AH'2: dx: 0. — (Q x).
(ex_ind
U Ax: U, —(Q x) 3x: U. (O x) = Vx0: U. (Q x0)
Ax: U. AE: — (Q x).
(ex_intro
U Ax0: U. (Q x0) = ¥x1: U, (Q x1) x
AH'3: (Q x). (Faise_ind Yx0: U.{(Q x0) (E H'3))) H'2)
AH'2: — (3x: U. —(Q x)).
(ex_intro
U Ax:U. (@ x) = Vx0: U, (Q x0) HO
AH'3: (Q H'0). Ax: U,
(or ind
(@ x) - (Q x) (Q x) AH'4: (Q x). H'4
AH4: - (Q x).

(False_ind (G x) (H'2 (ex_intro U Ax0: U. -+ (Q x0) x H4)))

(H' (Q x)))) (H' 3x: V. —(Q x))) (H' Vx0: U. (Q x0))).

Fig. 7b.

Thearem Drinkers’ principle.
Statement
(VP: Prop. P v = P) =3

Proof
Assume VP: Prop. P v — P (H)
Let U be a sel
Consider an arbitrary glement H'0 in U
Lt Q . U = Prop
Specializing H' to Vx0: U. (Q x0). we get
(Vx0: U. {Q x0)) v — (Vx0: U.(Q x0))
So we have two cases .
a) Assume WVx0: U. (Q x0) ('t
Assume (Q H'0) (H'2)
We have H'1
We have proved (Q H'0) = Vx0: U.(Q x0)
We have found an slement x that verifies (Q x) =» Vx0: U. (Q x0),
namealy H'O
b) Assume — (T x0: U, {Q x0)) (H'1)
Specializing H' to dx: U. — (Q x), we gat
(Ax: U, —(Q x)) v — (Ix: U, - (Q x))
=0 we have two cases .
a) Assume Ix: U. — (Q x) (H'2)
Choose an element x in U such that —{(Q x) (E)
Assume (G x) (H'3)
From H3 and E. we deduce a contrachiction
S0, this case cannot happen
We have proved (Q x) = Vx0: U, (Q x0)
We have found an element X0 that verifies
(Q x0) = Vx1:U. (Q x1), namely X
b) Assume -- (dx: U. —{(Q x)) (H'?)
Assume (Q H'0) (H'3)
Consider an artyrary element x i U
Specialzing H' to (Q x), weget (Q x) v — (Q x)
S0 we have two cases .
a) Assume (Q x) (H'4)
We have H'4
by Assume - (Q x} (H'4)
Wa have H'4
We have found an element x0 that venfies
- {(Q x0), namaly x
50, from M'2, we deduce a confradiction
S0, this case cannot happen
We have (Q x) in bath cases
We have proved (Q #°0) == Vx: U, (& x)
We have found an slement X that venfies
(Q x) = Vx0: U. (Q x0), namely H'0
We have Jx: U. {Q x) =3 Vx0: U. (Q x0) in both cases
We have 3x: U, (Q x) == Vx0: U, (Q x0) i both cases
We have proved
(VP: Prop. PV — P) =
VU: Set. U = VQ: U =» Prop. -x: U. (Q x) = V¥x0: W. (Q x0).

Fig. 7c.

Figure 7. Various forms of proofs of Smullyan’s ‘Drinkers’ principle’: a. the informal
proof; b. the proof-object; c. the proof-object translated back into natural language.

55

56

H.P. BARENDREGT

4.6. Related work

There are several systems for CM based on a different methodology. Not
all of these have portable proof-objects, and therefore one has to believe in
their design. Nevertheless, these systems are rather interesting.

A system of CM based on some form of TS, but without proof-objects is
Isabelle, see Paulson [17]. This system has a good module for term rewriting,
which is important for equational reasoning.

Systems of CM not based on TSs are HOL, see Gordon et al. [8], the
Boyer-More theorem prover, see Boyer et al. [3], OTTER, see Wos et al.
21], and MIZAR, see Rudnicki [20]. HOL is based on higher order logic and
has been used for hardware verification. The Boyer-More theorem prover
1s based on a formal system called primitive recursive arithmetic (PRA).
Because this system is relatively weak-—it has no quantifiers and only states
universal propositions— there are more strategies for automated proof search
for PRA, than for the stronger theories. OTTER is based on the resolution
method and 1s able to find many proofs of tautologies in predicate logic used
In intuitive mathematical proofs. MIZAR is based on set theory formulated
in predicate logic. Many theorems have been proved in this system.

5. CONCLUSION

Systems for computer mathematics are very promising. Nevertheless, pre-
sently they still have some weak points. There is a need for a good vernac-
ular to make formalising more natural; there is a need for a good way to
handle symbolic computations; and finally for the TSs used one needs to
prove the faithfulness for the formalisations.

I expect, that within a decade systems for CM are more mature. In
particular they will include (or use) the power of systems for CA to deal
with equations. Then CM will be essentially stronger than CA, because
of the fact that statements can be proved. (Working with CA systems one
may overlook necessary side-conditions.) Two interesting uses are probable.
One in the field of interactive development of mathematics and one in the
field of software design.

The interactive development of mathematics does not imply ‘Death of
proof’ or the end of human involvement with mathematics, as some have
claimed. On the contrary, both proofs and the ingenuity of the user will play
an essential role in computer mathematics and its applications. Proofs are
essential, because without them there is no warranted correctness; humans
are essential, because otherwise proofs cannot be found.

The limited experience with CM systems has shown that the phase of
defining concepts is very essential. Once sufficient experience is obtained
with handling complicated notions, I expect applications to specification
and correctness of software systems. A necessary condition is, that software
1s written in a modular way, as is possible in e.g. functional languages. Some

THE QQUEST FOR CORRECTNESS

researchers express doubts, that the design methodology of the Chinese box
will be sufficient to produce correct software. They do believe, however, in
program extraction from verified proofs. In any case, precise specifications
and proofs will be important.

Acknowledgements
I thank the following persons for useful information: G. Barthe, M. Bezem,
R. Boyer, A. Cohen, R. Constable, H. Elbers, H. Geuvers, GG. Huet, H. Mei-

jer, R. Plasmeijer, R. Platek, R. Pollack, M. Ruys, F. Vaandrager and
H. Wupper.

REFERENCES

1.

A

10.

11.

H.P. BARENDREGT (1992). Typed Lambda calculi. S. ABRAMSKY ET
AL. (eds.). Handbook of Logic in Computer Science, Oxford University
Press, 117-309.

H.P. BARENDREGT, T. NIPKOW (eds.) (1994). Types for Proofs and
Programs, Lecture Notes in Computer Science, 806, Springer, Berlin.

R.S. BOYER, J.S. MOORE (1988). A computational logic, Academic
Press, New York.

A. BUNDY (ed.) (1994). Automated Deduction—CADE-12, Lecture
Notes in Artificial Intelligence, 814, Springer, Berlin.

R. CONSTABLE, ET AL. (1986). Implementing Mathematics with the
NuPrl Proof Development System, Prentice Hall, London.

Y. Coscoy, G. KAHN, L. THERY (1995). Extracting text from proofs,
in: M. DEZANI-CIANCAGLINI (eds.). Typed Lambda Calculus and Ap-

plications, Lecture Notes in Computer Science 902, Springer, Berlin,
109-123.

G. DOWEK, ET AL. (1993). The Coq Proof Assistant User’s Guide~—
Version 5.8. Projet Formel, INRIA, Rocquencourt.

M.J.C. GorDON, T.F. MELHAM (1993). Introduction to HOL: a theo-
rem proving enuvironment for higher order logic, Cambridge University
Press, Cambridge.

Z. Luo, R. PoLrAack (1992). LEGO proof development system: User’s
manual, Technical Report ECS-LFCS-92-211, Computer Science De-
partment, University of Edinburgh.

P. MARTIN-LOF (1984). Intuitionistic Type Theory, Studies in Proof
Theory, Bibliopolis, Napoli.

J. MCCARTHY (1962). Computer Programs for Checking Mathematical
Proofts, in: Recursive Function Theory, Proceedings of a Symposium in
Pure Mathematics, V, American Mathematical Society, Providence, RI,
219-227.

57

58

12.

13.
14.

16.

17.

1.

19.

20.

21.

H.P. BARENDREGT

T.F. MELHAM, J. CAMILLERI (eds.) (1994). Higher Order Logic The-
orem Proving and its Application, Lecture Notes in Computer Science,
859, Springer, Berlin.

R. MusiL (1952). Der Mann ohne Eigenschaften, Rowohlt, Hamburg.

R.PP. NEDERPELT, J.H. GEUVERS, R.C. DE VRIJER (eds.) (1994).
Selected Papers on Automath, Studies in Logic 133, North-Holland,
Amsterdam.

C. PARENT (1994). Certified programs in the system Coq--The pro-
gram tactic, in: [2], 291-312.

C. PAULIN-MOHRING (1993). Inductive Definitions in the Sytem Coq-—
Rules and Properties, in: M. BEZEM ET AL. (eds.). Typed Lambda
Calculus and Applications, Lecture Notes in Computer Science 664,
Springer, Berlin, 328-345.

L. PAULSON (1994). Isabelle: A generic theorem prover. Lecture Notes
in Computer Science 828, Springer, Berlin.

R. PLASMEIJER, M. VAN EEKELEN (1993). Functional Programming
and Parallel Graph Rewriting, Addison Wesley, New York.

D. POUNTAIN, (1994). Functional programming comes of age, in: Buyte,
183-18&4.

P. RUDNICKI (1992). An overview of the MIZAR project. Available by
anonymous FTP from

menaik.cs.ualberta.ca as pub/Mizar/Mizar_0Over.tar.Z.

L. Wos, R. OVERBEEK, R. Lusk, J. BOYLE (1992). Automated Rea-
soning: Introduction and Applications, McGraw-Hill, New York.

